Targeting Cadherin-17 Inactivates Ras/Raf/MEK/ERK Signaling and Inhibits Cell Proliferation in Gastric Cancer
نویسندگان
چکیده
Cadherin-17 (CDH17), one member of 7D-cadherin superfamily, was overexpressed in gastric cancer (GC) and was associated with poor survival, tumor recurrence, metastasis, and advanced tumor stage. So far the cellular function and signaling mechanism of CDH17 in GC remains unclear. In this study, we showed that over 66% of GC cell lines (20/30) were CDH17 positive. Tissue microarray (TMA) assay showed that 73.6% Chinese GC tissues (159/216) were CDH17 positive, while 37% respective adjacent normal tissues were CDH17 positive. Knockdown of CDH17 inhibited cell proliferation, migration, adhesion and colony formation, and also induced a cell cycle arrest and apoptosis in AGS human GC cells. On the other side, overexpression of CDH17 facilitated MGC-803 GC tumor growth in nude mice. Antibody array and Western blotting assay demonstrated that knockdown of CDH17 in AGS cells down-regulated integrin β series proteins, further inactivated the Ras/Raf/MEK/ERK pathway and led to p53 and p21 accumulation, which resulted in proliferation inhibition, cell-cycle arrest and apoptosis induction. Collectively, our data firstly demonstrate the capacity of CDH17 to regulate the activity of Ras/Raf/MEK/ERK pathway for cell proliferation in GC, and suggest that CDH17 can serve as an attractive therapeutic target for future research.
منابع مشابه
The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner.
Tumors with mutant BRAF and some with mutant RAS are dependent upon ERK signaling for proliferation, and their growth is suppressed by MAPK/ERK kinase (MEK) inhibitors. In contrast, tumor cells with human EGF receptor (HER) kinase activation proliferate in a MEK-independent manner. These findings have led to the development of RAF and MEK inhibitors as anticancer agents. Like MEK inhibitors, th...
متن کاملAnalysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.
Mutationally activated KRAS, detected in approximately 90% of pancreatic ductal adenocarcinomas (PDA), has proven an intractable pharmacologic target to date. Consequently, efforts to treat KRAS-mutated cancers are focused on targeting RAS-regulated signaling pathways. In mouse models, expression of BRAF(V600E) combined with dominant-negative TP53 elicits PDA, and pharmacologic blockade of mito...
متن کاملSignaling and Regulation Analysis of mRNA Profiles after MEK1/2 Inhibition in Human Pancreatic Cancer Cell Lines Reveals Pathways Involved in Drug Sensitivity
Mutationally activated KRAS, detected in approximately 90% of pancreatic ductal adenocarcinomas (PDA), has proven an intractable pharmacologic target to date. Consequently, efforts to treat KRAS-mutated cancers are focused on targeting RAS-regulated signaling pathways. In mouse models, expression of BRAF combined with dominant-negative TP53 elicits PDA, and pharmacologic blockade ofmitogen-acti...
متن کاملCombined targeting of Raf and Mek synergistically inhibits tumorigenesis in triple negative breast cancer model systems
Aberrant Ras-MAPK signaling from receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor-2 (HER2), is a hallmark of triple negative breast cancer (TNBC); thus providing rationale for targeting the Ras-MAPK pathway. Components of this EGFR/HER2-Ras-Raf-Mek-Erk pathway were co-targeted in the MDA-MB-231 and MDA-MB-468 human TN...
متن کاملEmerging MEK inhibitors.
IMPORTANCE OF THE FIELD The Ras/Raf/MEK/ERK pathway is often activated by genetic alterations in upstream signaling molecules. Integral components of this pathway such as Ras and B-Raf are also activated by mutation. The Ras/Raf/MEK/ERK pathway has profound effects on proliferative, apoptotic and differentiation pathways. This pathway can often be effectively silenced by MEK inhibitors. AREAS C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014